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Abstract. The derivative non-linear Schrodinger equation exhibiting non-ultralocal canoni- 
cal structure is investigated to obtain various relationships including classical r - s  matrices 
and the Yang-Baxter relation modified by the non-ultralocality. The complete integrability 
of the system is established through explicit action-angle canonical variables. An attempt 
has been made to solve the corresponding quantum field model in the semiclassical 
approximation. A possibility of eliminating non-ultralocality of the model, necessary for 
exact quantum inverse scattering treatment, is demonstrated. 

1. Introduction 

In the last two decades a number of integrable classical non-linear field models have 
been discovered in two spacetime dimensions and inverse scattering theory ( IST) has 
been successfully applied to them to explore exact analytic solutions [l, 21. IST was 
further generalised (QIST) to cover quantum field-theoretic versions of some classically 
integrable systems, such as the non-linear Schrodinger equation (NLS)  [3,4], the 
sine-Gordon model [ 5 ] ,  the quantum three-wave interaction [6,7] and various other 
models [8,9]. Recent years have witnessed a significant increase in research activities 
on QIST and remarkable progress has been achieved in this field [8,9]. Some of these 
achievements are the formulation of the QIST scheme through discrete and continuous 
methods, reproducing results of a 8-function Bose gas showing interesting connections 
between QIST and the Bethe ansatz, which reveals a more complete insight of quantum 
the integrable systems; finding the mass spectrum and S matrix in the SG model, etc. 
On the other hand, it is surprising to observe that, in spite of the impressive progress 
of QIST and extensive research in this field, attention has mostly focused on a particular 
class of problems, e.g., on integrable systems with ultralocal Poisson bracket relations, 
i.e. systems with canonical brackets containing only the &function without any deriva- 
tive terms. However, there exists a large class of interesting non-linear systems with 
non-ultralocal properties, such as Kdv,  M K d v  [ 11, the complex sine-Gordon [ 10,111, 
the non-linear u-model [ 121, the chiral model [ 131 and the derivative [ 141 and modified 
derivative [ 151 non-linear Schrodinger equation, etc, for which QIST is not developed 
and very few works are devoted to this challenging problem. Tsyplyaev [16] was 
possibly the first to initiate this problem and to find a new method for calculating the 
classical r matrix for such non-ultralocal models. Thereafter, but only very recently, 
Maillet [ lo,  121 has shown a distinct approach in this field by introducing r and s 
matrices and found a new Yang-Baxter relation along with some other important 
results. There was also a recent attempt to tackle the K d v  equation by transforming 
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its canonical structure [ 171. Unfortunately, however, most of these methods were 
confined to the classical models and to date there is no clear prescription for handling 
the corresponding quantum versions. 

The aim of our present study is to elaborate this method for the derivative non-linear 
Schrodinger equation (DNLS) and extend it further to solve the quantum model in a 
semiclassical approximation. We construct r and s matrices [lo], deduce a modified 
classical Yang-Baxter equation using the Jacobi identity method developed in [ 101 
and check different general formulations for DNLS. We also find, as a byproduct, the 
Poisson bracket relation between scattering data leading to action-angle variables, 
which enable us to show the complete integrability of the classical model. In the 
semiclassical approximation the quantum Bethe state with the corresponding eigen- 
values has been obtained for the infinite conserved quantities. The formation of a 
collective bound state (soliton) is analysed. A possibility of eliminating non-ultra- 
locality through gauge transformation is demonstrated. 

The organisation of the paper is as follows. In 0 2 we derive different relevant 
formulae for non-ultralocal DNLS. Section 3 establishes complete integrability of the 
classical DNLS. Section 4 describes a semiclassical approach to solve the quantum 
model. Section 5 presents a way to free the model from non-ultralocality. Section 6 
is the concluding section. 

2. Non-ultralocal structures related to DNLS 

It is known that an integrable non-linear PDE may be represented by the Lax pair, 
which again may be replaced only by the spectral operator L and the Poisson bracket 
relation. For DNLS [14] 

i+, + +xx +ix(s+++)x  = 0 (2.1) 

L ( x ,  A )  = - i A 2 ~ 3 + A x + + ( x ) u - - A + ( x ) u +  (2.2) 

{+(XI,  + + ( Y ) )  = dx6(x - Y )  (2.3) 

{L(x, A)OL(Y, CL))= Bax6(x - Y )  + CaY6(x - Y )  

we have 

where u3, U* are Pauli matrices and the Poisson bracket relation 

with non-ultralocal structure. Direct calculation in this case leads to 

(2.4) 

where E = - x h p a + @ u - ,  C = xApu-@u+ and a notation (AOE) , ,k l  = AtkEJl, { A @  
E }  = {Atk ,  EJ[}  has been introduced. The monodromy matrix satisfies the equations 
[4, 131: 

J,T( Z, Y,  A 1 = U Z, A 1 4 Zr Y ,  A ) 

d,T(X, 2, h ) = - T ( X ,  t, h)L(Z,  A )  

(2.5a) 

(2.5b) 

and is defined at various limits as 

T+(Y,  A ) = E ; ' ( x ,  A ) T ( X , Y ,  A)Ix-+cc 7 + ( ~ ,  A ) I y + + c a =  E;'(Y, A ) .  (2.6a) 

7-(x, A )  = 7(x, Y,  ~ ) E - ( Y ,  A )  l Y + - m  (2.6b) ~ - ( x ,  A ) / x + - c c =  E-(x, A )  
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and 

In the case of DNLS (2.2) with vanishing boundary condition on the field I i + b \ ~ ~ l + ~ + O ,  
one gets E,(x ,  A )  = exp (-iA2a3x) IX+*-. We may now calculate the corresponding 
Poisson bracket [ 123 for our case: 

{ 7 ( ~ ) @ 7 ( p ) } =  I__dz  J-=dz’T+(z, ~ ) 0 7 + ( z ‘ , p )  

m a3 

x { L ( z ,  A ) @ L ( z ’ ,  p ) } ~ - ( z ,  A ) @ K ( z ’ ,  p )  

(2.7a) 

(2.7b) 

In deducing (2.7) we have successively used definition (2.6), relation (2.4), equation 
(2.5) and the matrix property AB@ CD = ( A @  C ) (  BO D ) .  Assuming now the existence 
of a ro(A, p, z )  matrix such that 

7+@ 7:RT-O 7: =a,( 7+@ 7:rOT-O 7:) (2.8) 

where a prime denotes different arguments A in parameter space, on one hand, we 
may integrate (2.7) to obtain 

{7@7’}= r + T ( A ) @ . r ( p )  - T ( A ) @ T ( p ) r -  (2.9a) 

where 

rs(A, p )  = lim ( E ; ’ ( z ,  A ) @ E ; ’ ( z ,  p)ro (A ,  p, z)E, (z ,  A)@E, ( z ,  p ) )  (2.9b) 

is introduced and, on the other hand, from (2.8) using (2.5) we derive the relation [16]: 

(2.10) 

z+*m 

Jxro( A, p, x) + [ ro,  LOU + U@ L’] = 0. 

In a more general case 

{L(z, A ) @  L ( z ’ ,  p ) }  = A S ( Z  - z ’ )  + Ba,6( z - z ’ )  + Ca,,S( z - z ’ )  (2.4’) 

where A = A ( z ,  A, p ) ,  B = B ( z ,  z‘ ,  A, p )  and C = C ( z ,  z ’ ,  A, p )  are different functions 
of field variables, a similar treatment leads to the relation (2.10) with R given by [ 131: 

( 2.7 b ’) 
Note that putting A = O,a,B = 0, a,C = 0 in (2.4’) and (2.7b’) we recover (2.4) and (2.7) 
for DNLS and for this case r and s matrices introduced in [ 131 take the following form: 

(2.11a) 

(2.11b) 

Note that in such models, in general, additional boundary terms related to non- 
ultralocality should appear on the right-hand side of (2.9a) [lo]. But since for DNLS, 

matrices like B(A,  p )  and C(A, p )  do not have any poles at A2+p2 corresponding 
matrices B,(A, p )  and C,(A, p )  vanish at the infinite interval limit giving no additional 
contribution to Poisson bracket (2.9a). 

R=A+[L@B,  B]-[BOL’,  C]+J, (B+C) .  

s = -1 z( B - c)  = f x A p (  U - @  a++ a+@ a-) 

r = r , + $ ( ~  + C )  = ro++xAp(a-O a+ - a+@a-). 
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One may also check that PBP = -C, PsP = s and P r ( A ,  p ) P  = - r ( p ,  A ) ,  provided 
Pro(& p ) P =  -ro(p,  A ) ,  which is clear from (2.13). We find r + s  = ro-xApa+@a- and 
r - s = ro+ xhpu-@ U+, which leads through the Jacobi identity [ 131 of (2.7) to the 
modified Yang-Baxter relation 

(2.12u) 

(2.12 b) 

is the contribution due to non-ultralocality. In (2.12) we have assumed the locality 
condition dxrO = 0, which solves (2.10) after a rather lengthy but straightforward calcula- 
tion to yield 

(2.13) 

In the limit of an infinitely large interval using (2.9) and regularising the singularities 
through principal values, we finally obtain 

ro(A,  p )  = - ( A 2 - p 2 ) - ' ( t ~ ( A p ) 2 u 3 @ a 3  - A 2 B + p 2 C ) .  

(2.14) 

where 5 = A' and 5 = p2.  

3. Complete integrability of classical DNLS 

For evaluating the Poisson brackets between the elements of the scattering matrix ~ ( l ) ,  
let 
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-i2" N 1 "  
X xn k = l  2 X T  - E  

c, = - c (5:" - 5;) +- ( 2 5 )  " - I  In( 1 a 1 2 )  d(25). Po 
CO = - (3.4) 

Now separating real and imaginary parts of ( 3 . l b ) ,  after a little manipulation, one 
obtains 

1 

x d  
n(5)=---71nla(5)1 d5) = arg b ( 5 )  (3.5) 

(3.6) 

with the Poisson bracket relations 

{ n ( t ) ,  do) = S(5- 5 )  {n(5) ,  n ( 0 )  = {d5), do)  = 0 
as the canonical action-angle variables for the continuum spectrum and through the 
representation (3.3) 

(3.7) 

with relations { N,, cp,} = all, { N, ,  N,} = {q,, cp,} = 0 as action-angles for a discrete spec- 
trum. The infinite conserved quantities (3.4) may be clearly expressed through action 
variables only, in the form 

(3.8) 
Due to the trivial Poisson brackets between action variables the infinite set of conserved 
quantities are in involution: { C,, C,n} = 0. We now have the Hamiltonian also expressed 
only through action variables as 

(3.9) 

establishing the complete integrability [ 11 of the classical DNLS, where we have set 
Nk = p i 2  eiah, OS ( Y k  S T. Note that the first part of the spectrum (3.9) corresponds to 
the soliton contribution, which vanishes for (Yk  = 0 ,  i.e. for Im , i k  = 0, leaving only the 
continuum spectrum related to radiation. 
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4. Semiclassical quantisation of DNLS 

It is interesting to note that, although the canonical field variables for DNLS exhibit 
non-ultralocality in the configuration space, the action-angle variables are completely 
ultralocal in the parameter space and have standard canonical relations. This observa- 
tion along with the known fact that the exact quantum and semiclassical treatments 
yield the same result for NLS [ 181 motivates us to propose a symmetrised semiclassical 
method in analogy with the exact quantum treatment. We define 

R*(& 6 ) =  P(l@n-ifir*(l; 5)) 
= P - $fi[ C( 5, [)(U@ U + a3@ a') 

* d (l)S( 5 - 5)(U@ u3 - a3@ U ) ]  (4.1) 
and replacing the Poisson bracket by the commutator we readily obtain from ( 2 . 9 ~ )  
the famous relation [8] (for the infinite interval): 

(4.2) R+(L 5)T(A)O T ( c L ) =  T ( I L ) @ T ( A ) R - ( ~ ,  5) 
reflecting the quantum integrability in the semiclassical limit. Equation (4.2) leads to 
the following commutation relations: 

[A( l ) ,  4 0 1  = [A( l ) ,  A'(5)I = [ W l ) ,  W5)I = 0 

[ B ( l ) ,  B+(5)1 = -2b( l )A+( l )A( l )6(5  - 6) 

(4.3u) 

(4.3 b) 

(4.3c) 

A(l)B+(5)  = a(5, 6 ) B + ( O A ( l )  + b ( l ) S ( l -  5)A(l)B+(5)  

where b ( l )  =2fi7rx12 and u ( l , l )  =( l+i f ic ( l ,  &))/(1 -ific(l, 6)). Definining vacuum 
IO) as B ( l )  10) = 0 and A( 5) IO) = 10) we may construct the N-particle eigenstate as 
1 @N) = IIcl B+( 6 )  IO), which gives clearly the operator action 

In A ( l )  I = In a N  I @ N )  

Assuming a similar expansion for operators [4]: 
rl: 

l n ~ ( l ) = i x f i  dml-" 
m=O 

and definining 4 =: 4: we obtain the operator relation 

(4.4) 

(4.5) 

(4.6) 
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Here, due to the complicated structure of (4.6) and contrary to the NLS case, physical 
interpretations become rather difficult. Nevertheless, the energy eigenvalue of the 
N-particle state given by H = 4Cl where 

leads to 

8i - 16 16 
H = -  ( c - c ) = y  sin2pJ=- wJsinpJ.  

x h  , = I  x h ] = I  x h  (4.7) 

Note that the spectrum of the N-particle scattering state (4.7) is similar to the 
Hamiltonian for the classical N-soliton solution given through action variables by the 
first term in (3.9). 

For finding the bound state or collective soliton state formed by N particles we 
proceed in analogy with the NLS case [4] and observe that a distribution 

5, = [ 50’ - i (  N + 1 - 2j)xhI-I lo = real constant (4.8) 

cancels all zeros of d N  leaving only a single one corresponding to the one-soliton state: 

where PN = ((,‘+ixNh)-’. Hence the energy of the bound state may be given by 
(4.7), with the values of 6, as (4.8) resulting in an interesting expression: 

16N 
Hi,”;’ = 22 sin2 p“’ 

h X  
p”’ = tan-’( % X N ( ~ ) .  (4.10) 

Therefore, the binding energy of this N-particle state is given by 
= ~ ~ ( 1 1 -  H ( N j  

B 501 sol 

=16N(;[(l+ f i2~2(g) -1- (1+ fi2x2N25;)-’] 

1 6 h ~ ~ 5 : ( N ’ - l ) N + O ( h ~ ) 3 0  (4.11) 

which establishes the required stability of the state. It is interesting also to observe 
that in the weak-coupling limit the binding energy (4.11) has some resemblance to that 
of an attractive &function Bose gas [3]. In the same limit we also have 

Hi:’= 16N5;- 16h2~2N35:+0(h4)  

where the first term may be interpreted as the total energy of N free non-interacting 
( x  = 0) particles and the rest of the terms are due to interactions. 

5. Transformation to ultralocality 

For an exact QIST treatment one should have an ultralocal model from the very 
beginning, since at present the QIST formulation is available only for this case. The 
underlying idea is that a gauge transformation of the form 6 = h@ leading to 

(5.1) L = hLh-’ + h,h-l 
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might change the non-ultralocal canonical structure to the ultralocal form in suitably 
chosen variables, which in fact play the role of fundamental canonical variables. 
Redefinining q = -+/&, q+ = -&++ we have L =  -iA2a3+i&(aa2+ bal )A with 
q = a + ib. Choosing now the gauge h = exp( -i&ha'cp), where cpx = ib,  one obtains 
the transformed matrix i in the form 

i= - i A ( A  cos e - & a ( x )  sin B ) a 3 + i h ( A  sin f?+&a(x) cos O)a2 (5.2) 

where 8 =&AV,  with the ultralocal canonical structure 

{cp(x), 4 Y ) )  = iS(X - Y h  (5.3) 

In deducing (5.2) we have used the identities 

cos e ( ? ) ~ ~ ( ~ )  sin e. ha'h-1 =a' ha3(2)h-1 = a3(2)  

Proceeding in the same way as discussed in § 2 we obtain 

{&x, A ) @ i b ' , ~ ) } = A ( x ,  A , P ) ~ ( X - Y )  

where 

A(x, A, p )  = -ixhp[a(A, p, cp, a ) a 3 @ a 3 + P ( A ,  p, cp, a ) a 2 @ a 2  

+ Y ( A ,  CL, cp, a ) a 3 @ a 2 -  ~ ( p ,  A, cp, a )a2@a3]  

with 

a ( ~ ,  p, cp, u ) = ( A * - ~ ' )  sine sin @'+&(A cos e cose'-p cos @'sin e ) a ( x )  

~ ( A , ~ , c p , a ) = ( A 2 - p 2 ) c o ~ ~ c o ~ e ' + & ( A  sin8cos8 ' -psinO'cos O ) a ( x )  

and 

?(A, p, cp, a )  = ( A 2 - p 2 )  sin 0 cos @ ' + & ( A  cos 6J cos O'+p sin 8 sin O ' ) a ( x ) .  

(5.4) 

(5.5) 

Note that the form like (5.4) is recovered from the general relation (2.4') by neglecting 
the non-ultralocal terms: B = C = 0, which yields from (2.76') fi = A and from (2.10) 
the required equation for ro(A, p, x)  as 

d,r,+ [ r,, L " @ U  + U@ 21 = A. (5.6) 

Unfortunately, we are unable to find yet an explicit form of r, as a solution of (5.6) 
and therefore cannot investigate further the integrability properties of the model at 
the classical level. However, we hope that, due to its ultralocal canonical structure, a 
direct quantum inverse scattering treatment might be possible. 

6. Conclusion 

The derivative non-linear Schrodinger equation with non-ultralocal canonical structure 
is investigated classically and various relevant relationships and expressions are extrac- 
ted. Using this result complete integrability of the system is shown with explicit 
action-angle variables. A semiclassical treatment revealed the existence of N-particle 
and soliton bound states. This also demonstrates the stability of the bound states and 
that in the weak-coupling limit the binding energy resembles that of a &function Bose 
gas. Through a suitable gauge transformation the non-ultralocality is removed from 
the model. It is hoped that this will help in pursuing QIST of this model. This problem 
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is now under investigation and will be reported elsewhere. We also wish to comment 
in this connection that we are able through similar gauge transformation to free the 
models like M K d v  [19] and sine-Gordon (in light-cone coordinates) [20] from non- 
ultralocality and solve their quantum version exactly through QIST. We should note, 
however, that gauge-transformed models, though gauge equivalent, may not be physi- 
cally the same as the original model [21] and, moreover, for the quantum models this 
is still an open problem. It is also interesting to observe that for models with a known 
exact QIST solution, the semiclassical approximation adopted here yields exact results 
apart from some renormalisation of the coupling constant [ 191. If this is supposed to 
be true for all integrable systems, then even semiclassical DNLS results obtained here 
might be significant. 
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